Requirements

Work through College Board Unit 4… blog, add definitions, and pictures. Be creative, for instance make a story of Computing and Networks that is related to your PBL experiences this year.

How a Computer Works

As we have learned, a computer needs aa program to do something smart. The sequence of a program initiates a series of actions with the computers Central Processing Unit (CPU). This component is essentially a binary machine focussing on program instructions provided. The CPU retrieives and stores the data it acts upon in Random Access Memory (RAM). Between the CPU, RAM, and Storage Devices a computer can work with many programs and large amounts of data.

List specification of your Computer, or Computers if working as Pair/Trio

  • Processor GHz: 1.1 GHz Quad-Core Intel Core i5
  • Memory in GB: 8 GB
  • Storage in GB: 500 GB
  • OS: macOS Catalina

Define or describe usage of Computer using Computer Programs. Pictures are preferred over a lot of text. Use your experience.

  • Input devices: Devices used by people to input data into a computer/program. Examples include keyboard and mouse
  • Output devices: Devices used to display and output data from a computer, such as the computer monitor or speakers.
  • Program File: A file that contains code/instructions for the computer to execute
  • Program Code: A set of instructions written a specific language which a computer understands and can execute. The backbone of any computer program.
  • Processes: Tasks currently running on a computer’s operating system, using its own memory space and resources. These can be viewed using Activity Monitor or the top command
  • Ports: Points of communication between computer and external devices and networks, allowing data to be transferred in and out of a computer. We use these in deployment (AWS) and when also running a local server.
  • Data File: Data that program can read an access, such as a text file, image file, or database. (Ex: sqlite.db)
  • Inspect Running Code: Viewing the current state of the program while it is running, such as the current values of variables or the source code being executed.
  • Inspect Variables: Ability to view current values of variables as the program is running. Useful for debugging and understanding how the program works.

Computer Hardware

The Internet

Watch/review College Board Daily Video for 4.1.1

  • Essential Knowledge
    • A computing device is a physical artifact that can run a program. Some examples include computers, tablets, servers, routers, and smart sensors.
    • A computing system is a group of computing devices and programs working together for a common purpose.
    • A computer network is a group of interconnected computing devices capable of sending or receiving data.
    • A computer network is a type of computing system.
    • A path between two computing devices on a computer network (a sender and a receiver) is a sequence of directly connected computing devices that begins at the sender and ends at the receiver.
    • Routing is the process of finding a path from sender to receiver.
    • The bandwidth of a computer network is the maximum amount of data that can be sent in a fixed amount of time.
    • Bandwidth is usually measured in bits per second
  • Complete Vocabulary Matching Activity. Incorporate this into your learnings from year. To analyze measure path and latency use traceroute and ping commands from Linux Terminal.
    • Path: The route or sequence of nodes (such as routers) that data packets take from one device to another on a computer network.
    • Route: The path that data packets take from one device to another on a computer network, typically consisting of multiple hops through different routers.
    • Computer System: A combination of hardware and software that performs specific functions, such as running applications or managing data.
    • Computer Device: A physical device that can be connected to a computer system and performs a specific function, such as a keyboard, mouse, or printer.
    • Bandwidth: The amount of data that can be transmitted over a computer network in a given period of time, usually measured in bits per second (bps), kilobits per second (Kbps), or megabits per second (Mbps).
    • Computer Network: A collection of interconnected computer systems and devices that can communicate with each other and share resources, such as data, applications, and devices.

Watch/review College Board Daily Video 4.1.2

  • Complete True of False Questions

  • Essential Knowledge
    • The internet is a computer network consisting of interconnected networks that use standardized, open (nonproprierary) communication protocols.
    • Access to the internet depends on the ability to connect a computing device to an internet connected device.
    • A protocol is an agreed-upon set of rules that specify the behavior of a system.
    • The protocols used in the internet are open, which allows users to easily connect additional computing devices to the internet.
    • Routing on the internet is usually dynamic; it is not specified in advance
    • The scalability of a system is the capacity for the system to change in size and scale to meet new demands.
    • The internet was designed to be scalable
    • Information is passed through the internet as a data stream. Data streams contain chunks of data, which are encapsulated in packets.
    • Packets contain a chunk of data and metadata used for routing the packet between the origin and the destination on the internet, as well as for data reassembly.
    • Packets may arrive at the destination in order, out of order, or not at all
    • IP, TCP and UDP are common protocols used on the internet.
    • The world wide web is a system of linked pages, programs, and files.
    • HTTP is a protocol used by the world wide web
    • The world wide web uses the internet
  • Go over AP videos, vocabulary, and essential knowledge. Draw a diagram showing the internet and its many levels. A preferred diagram would using your knowledge of frontend, backend, deployment, etc. Picture would highligh vocabulary by illustration. The below illustration have some ideas

F

  • Often we draw pictures of machines communicating over the Internet with arrows. However, the real communication goes through protocol layers and the machine and then is trasported of the network. For College Board and future Computer Knowledge you should become familiar with the following …
     User Machine  <---> Frontend Server <---> Backend Server
    +-----------+         +-----------+         +-----------+
    |  Browser  |         |  GH Page  |         |   Flask   |
    +-----------+    ^    +-----------+    ^    +-----------+
    |    HTTP   |    |    |    HTTP   |    |    |    HTTP   |
    +-----------+    |    +-----------+    |    +-----------+
    |    TCP    |    |    |    TCP    |    |    |    TCP    |   
    +-----------+    |    +-----------+    |    +-----------+
    |     IP    |    V    |     IP    |    V    |     IP    |
    +-----------+         +-----------+         +-----------+
    |  Network  |  <--->  |  Network  |  <--->  |  Network  |
    +-----------+         +-----------+         +-----------+

The “http” layer is an application layer protocol in the TCP/IP stack, used for communication between web browsers and web servers. It is the protocol used for transmitting data over the World Wide Web.

The “transport” layer (TCP) is responsible for providing reliable data transfer between applications running on different hosts. The TCP protocol segments the data into smaller chunks called “segments”. Each segment contains a sequence number that identifies its position in the original stream of data, as well as other control information such as source and destination port numbers, and checksums for error detection.

The “ip” layer is responsible for packetizing data received from the TCP layer of the protocol stack, and then encapsulating the data into IP packets. The IP packets are then sent to the lower layers of the protocol stack for transmission over the network.

The “network” layer is responsible for routing data packets between networks using the Internet Protocol (IP). This layer handles tasks such as packet addressing and routing, fragmentation and reassembly, and network congestion control.

Fault Tolerance

Watch both Daily videos for 4.2

  • Complete the network activity, summarize your understanding of fault tolerance.
    • Fault tolerance is when systems can continue to function even after failures and errors occur, even unexpected ones.

Parallel and Distributed Computing

Review previous lecture on Parallel Computing and watch Daily vidoe 4.3. Think of ways to make something in you team project to utilize Cores more effectively. Here are some thoughts to add to your story of Computers and Networks…

  • What is naturally Distributed in Frontend/Backend archeticture?
    • The data is stored and actually updated in the backend but frontend displays and requests changes to be made to the backend. Both run their own processes but work together to create a single functioning product.
  • Analyze this command in Docker: ENV GUNICORN_CMD_ARGS="--workers=1 --bind=0.0.0.0:8086". Determine if there is options are options in this command for parallel computing within the server that runs python/gunicorn. Here is an article
    • You can add more workers to invoke parallel computing. You can also add more threads which distributes the work a single worker does.

Last week we discussed parallel computing on local machine. There are many options. Here is something to get parallel computing work with a tool called Ray.

  • Review this article… Can you get parallel code on images to work more effectively? I have not tried Ray.
  • Code example from ChatGPT using squares. This might be more interesting if nums we generated to be a lot bigger.
import ray

# define a simple function that takes a number and returns its square
def square(x):
    return x * x

# initialize Ray
ray.init()

# create a remote function that squares a list of numbers in parallel
@ray.remote
def square_list(nums):
    return [square(num) for num in nums]

# define a list of numbers to square
nums = [1, 2, 3, 4, 5]

# split the list into two parts
split_idx = len(nums) // 2
part1, part2 = nums[:split_idx], nums[split_idx:]

# call the remote function in parallel on the two parts
part1_result = square_list.remote(part1)
part2_result = square_list.remote(part2)

# get the results and combine them
result = ray.get(part1_result) + ray.get(part2_result)

# print the result
print(result)